Auto-regressive modeling of shadowing for RSS mobile tracking

نویسنده

  • Hadi Noureddine
چکیده

In this paper, we consider the tracking of mobile terminals based on the received signal strength (RSS) measured from several base stations. The spatial correlation of the random shadowing is exploited in order to improve the position tracking. We define an auto-regressive (AR) model of the temporal evolution of the shadowing. This model allows for performing a joint tracking of the position and the shadowing by applying a RaoBlackwellized (RB) particle filter approximating the posterior probability distributions numerically. The simulation results show that the tracking can be improved by considering sufficiently high auto-regressive orders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Train Tracking and Shadowing Estimation Based on Received Signal Strength

In this work, we present an on-board solution for train position tracking that can be used in cases of GPS failures and that does not suffer from the error accumulation problem of Dead Reckoning (DR). It is based on Received Signal Strength (RSS) measured in radio communication systems by several mobile stations having antennas placed on top of different carriages of the train. As the RSS is af...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Graphical Models for Human Motion Modelling

The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. To automate the process of motion modeling we consider a class of learned dynamic models cast in the framework of dynamic Bayesian networks (DBNs) applied to analysis and tracking of the human figure. While direct learning of DBN parameters is possible, Bayesian learning formalism suggests that ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010